Integrated Variance Forecasting: Model-Based vs. Reduced-Form

نویسنده

  • Natalia Sizova
چکیده

This paper compares model-based and reduced-form forecasts of financial volatility when high-frequency return data are available. We derived exact formulas for the forecast errors and analyzed the contribution of the “wrong” data modeling and errors in forecast inputs. The comparison is made for “feasible” forecasts, i.e. we assumed that the true data generating process, latent states and parameters are unknown. As an illustration, the same comparison is carried out empirically for spot 5-minute returns of DM/USD exchange rates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Seasonality and Forecasting of Monthly Broiler Price in Iran

The objective of this study was to model seasonal behavior of broiler price in Iran that can be used to forecast the monthly broiler prices. In this context, the periodic autoregressive (PAR), the seasonal integrated models, and the Box-Jenkins (SARIMA) models were used as the primary nominates for the forecasting model. It was shown that the PAR (q) model could not be considered as an appropri...

متن کامل

Using a Fuzzy Auto Regressive Integrated Moving Average Model for Exchange Rate Forecasting

Forecasting models have wide applications in decision making. In the real world, rapid changes normally take place in different areas, specifically in financial markets. Collecting the required data is a main problem for forecasters in such unstable environments. Forecasting methods such as Auto Regressive Integrated Moving Average (ARIMA) models and also Artificial Neural Networks (ANNs) need ...

متن کامل

AN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING

Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...

متن کامل

Using a Fuzzy Auto Regressive Integrated Moving Average Model for Exchange Rate Forecasting

Forecasting models have wide applications in decision making. In the real world, rapid changes normally take place in different areas, specifically in financial markets. Collecting the required data is a main problem for forecasters in such unstable environments. Forecasting methods such as Auto Regressive Integrated Moving Average (ARIMA) models and also Artificial Neural Networks (ANNs) need ...

متن کامل

Estimation of the optimal interpolation parameters in a quasi-geostrophic model of the Northeast Atlantic using ensemble methods

The SOPRANE operational forecasting system is based on a quasi-geostrophic (QG) model of the Northeast Atlantic. The assimilation scheme used to constrain the model consists of a Reduced Order Optimal Interpolation (ROOI) using an Extended Kalman Filter (EKF) formulation. Corrections to the model fields at the surface are consistent with satellite along track data and a priori statistical infor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009